Thursday, April 25, 2019

Swap Nodes of Linked List without Copying


C++ Code:


void swap_nodes(Node **headPtr, int a, int b){
    if(a == b || !headPtr || !(*headPtr))
        return;
    
    Node *curr = *headPtr;
    Node *prev = nullptr;
    Node *nodeA = nullptr;
    Node *nodeB = nullptr;
    Node *prevA = nullptr;
    Node *prevB = nullptr;
    
    while (curr) {
        if(curr->data == a){
            nodeA = curr;
            prevA = prev;
        } else if(curr->data == b){
            nodeB = curr;
            prevB = prev;
        }
        prev = curr;
        curr = curr->next;
    }
    
    if(!nodeA || !nodeB)
        return;
    
    if(prevA){
        prevA->next = nodeB;
    } else { // nodeA is head
        *headPtr = nodeB;
    }
    
    if(prevB){
        prevB->next = nodeA;
    } else { // nodeB is head
        *headPtr = nodeA;
    }
    
    Node *tmp = nodeA->next;
    nodeA->next = nodeB->next;
    nodeB->next = tmp;
}


Detailed explanation is available on youtube:  


Subscribe toKnowledgeCenter 


Monday, April 22, 2019

Remove Loop From Linked List using Floyd's Algorithm



C++ Code:


void remove_loop(Node *head){
    Node *slow = head;
    Node *fast = head;
    if (!head || !(head->next))
        return;
    while(slow && fast && fast->next){
        slow = slow->next;
        fast = fast->next->next;
        if(slow == fast)
            break;
    }
    
    // No Loop exixts
    if (slow != fast){
        std::cout << "No Loop" << std::endl;
        return;
    }
    
    // When Loop exists
    slow = head;
    while(slow->next != fast->next){
        slow = slow->next;
        fast = fast->next;
    }
    fast->next = nullptr;
}



Detailed explanation is available on Youtube:

Subscribe to KnowledgeCenter

Friday, April 19, 2019

Find First Element of Loop in Linked List




C++ Code:

void find_loop_beginning(Node *head){
    Node *slow = head;
    Node *fast = head;
    if (!head || !(head->next))
        return;
    while(slow && fast && fast->next){
        slow = slow->next;
        fast = fast->next->next;
        if(slow == fast)
            break;
    }
    
    // No Loop exixts
    if (slow != fast){
        std::cout << "No Loop" << std::endl;
        return;
    }
    
    // When Loop exists
    slow = head;
    while(slow != fast){
        slow = slow->next;
        fast = fast->next;
    }
    std::cout << "First loop element = " << slow->data << std::endl;
}

Detailed explanation can be found on Youtube:


Subscribe to KnowledgeCenter

Find k-th node from end in Linked List



void print_kth_from_end(Node *head, int k){
    Node *lead = head;
    Node *lag = head;
    while(k > 0){
        if(lead){
            k--;
            lead = lead->next;
        }
        else{
            std::cout << "K is larger than length of Linked List" << std::endl;
            return;
        }
    }
    while(lead){
        lead = lead->next;
        lag = lag->next;
    }
    std::cout << "kth node from end = " << lag->data << std::endl;
}


Detailed explanation can be found on Youtube:


Subscribe to KnowledgeCenter

Thursday, April 18, 2019

Find the middle element of a Linked List


void print_middle(Node *head){
    Node *fast = head;
    Node *slow = head;
    while(fast && fast->next){
        fast = fast->next->next;
        slow = slow->next;
    }
    std::cout << slow->data << std::endl;
}

Watch the detailed explanation of the concepts on Youtube:

Subscribe to KnowledgeCenter

Wednesday, April 17, 2019

Reinforcement Learning : Introduction







Characteristics:

  1. No Supervisor, Reward signal
  2. Delayed Feedback
  3. Data depends on Agent's actions




Examples:

  1. Learning to play chess
  2. Making a robot walk
  3. Fly stunt manoeuvres in Helicopter




Reward (Rt):

  • A scalar feedback signal
  • Indicates how well agent is doing at time t
  • Agent tries to maximize cumulative Reward over time
E.g.,
  • Chess : +ve reward for winning the game, -ve for losing
  • Robot walk : +ve for forward movement, -ve for falling
  • Helicopter manoeuvres : +ve for following trajectory, -ve for crashing



Sequential Decision Making:

  • Select actions to maximize total future rewards
  • Long-term consequences
  • May need to sacrifice immediate rewards for better Long-term rewards
E.g.,
Some moves in chess, financial investments





Agent and Environment:

At each step t, the Agent:
  • Executes action At
  • Receives observation Ot
  • Receives scalar reward Rt

Environment:
  • Receives action At
  • Emits observation Ot+1
  • Emits reward Rt+1
t increments at environment step



Detailed explanation and illustrative examples can be found on Youtube:


Subscribe to KnowledgeCenter

History & State:
History:
  • A sequence of Observations, Actions and Rewards that the Agent has seen so far.
            Ht = A1, O1, R1, ….., At, Ot, Rt

  • All observable variables up to time t

  • What happens next depends on the history:
    • Agent(our Algorithm) selects Actions
    • Environment selects Observations/Rewards

State:
  • History is not very useful as it's a very long stream of data.

  • State is the information used to determine what happens next.

  • Function of History
St = f(Ht)
E.g, take only last 3 observations

Environment/World State:
  • State of environment used to determine how to generate next Observation and Reward.

  • Usually not accessible to Agent.

  • Even if visible, may not have any information useful for Agent

Agent State:
  • Agent's internal representation

  • Information used by Agent(our algorithm) to pick next Action

  • Can be any function of History


Markov Assumption:
  • Information State: State used by Agent is a sufficient statistic of History. In order to predict the future you only only need the current state of the environment.

  • State St is Makov if and only if:
P(St+1|St, At) = P(St+1|S1,S2,..,St, At)

  • Future is independent of Past given Present

  • E.g., State defined by a Trading Algorithm used by HFT traders.

Detailed explanation and illustrative examples can be found on Youtube:


Subscribe to KnowledgeCenter

Environment :
Fully Observable Environment:

  • Agent directly observes environment state
           O(t) = Sa(t) = Se(t)

  • Agent State = Environment State

  • Markov Decision Process(MDP)

Partially Observable Environment:

  • Agent indirectly observes Environment:
    • A HFT trader observes only current prices
    • A robot with camera vision doesn't observe its absolute location
    • Poker playing agent observes only public cards


  • Agent State != Environment State

  • Partially Observable Markov Decision Process (POMDP)

  • Agent has to construct its own representation of State
E.g.,
  • Sa(t) = H(t)
  • Sa(t) = (P[Se(t) = s1],....., P[Se(t) = sn])
  • Sa(t) = f(Sa(t-1), O(t))

Detailed description can be found on youtube:


Subscribe to KnowledgeCenter

Find the Length of Loop in Linked List




We modify the Floyd's Loop/Cycle Detection Algorithm that we saw in the previous Post to find the count of Nodes which are part of the Linked List.

int count_loop_lenth(Node *node){
    int count = 1;
    Node *curr = node;
    while(curr->next != node){
        curr = curr->next;
        ++count;
    }
    return count;
}

int detect_loop_floyd(Node *head){
    Node *slow = head;
    Node *fast = head;
    while(slow && fast && fast->next){
        slow = slow->next;
        fast = fast->next->next;
        if(slow == fast){
            return count_loop_lenth(slow);
        }
    }
    return 0;
}

Watch detailed Explanation on Youtube.


Subscribe to KnowledgeCenter


Saturday, April 13, 2019

Detect Loop in a Linked List



Method 1: (Hashing)


bool detect_loop_map(Node *head){

    std::unordered_map<Node*, bool> visited;
    Node *curr = head;
    while(curr){
        if (visited[curr] == true)
            return true;
        visited[curr] = true;
        curr = curr->next;
    }
    return false;

}

Method 2:(Floyd's Cycle Detection)


bool detect_loop_floyd(Node *head){
    Node *slow = head;
    Node *fast = head;
    while(slow && fast && fast->next){
        slow = slow->next;
        fast = fast->next->next;
        if (slow == fast){
            return true;
        }
    }
    return false;

}

Watch detailed explanation on Youtube:



Visit our Youtube playlist for Linked List: https://www.youtube.com/playlist?list=PL1w8k37X_6L-bwZCPpELH6Cwo3WzUxDp7

Subscribe to KnowledgeCenter

LeetCode 30 Day Challenge | Day 7 | Counting Elements

Given an integer array  arr , count element  x  such that  x + 1  is also in  arr . If there're duplicates in  arr , count them sepe...